Characterization of Chromia-Promoted γ -Iron Oxide Catalysts and Their CO Conversion Efficiency

M. L. KUNDU,* A. C. SENGUPTA,* G. C. MAITI,* B. SEN,* S. K. GHOSH,* V. I. KUZNETSOV,[†] G. N. KUSTOVA,† AND E. N. YURCHENKO†

*R&D Division, Projects & Development India Limited, Sindri-828 122, Dhanbad, India, and tlnstitute of Catalysis, Novosibirsk 630090, USSR

Received September 29, 1987; revised February 17, 1988

A systematic study has been conducted on the evolution of phases in chromia-promoted γ -Fe₂O₃ catalysts prepared under a wide range of conditions using different instrumental techniques, viz., DTA, XRD, TEM, IR, and Mössbauer spectroscopy. The structural parameters have been correlated with the reaction properties of the catalysts for the water gas shift reaction. It has been revealed that γ -Fe₂O₃ prepared by precipitation techniques has an imperfect spinel structure. In the wet mixing method of preparation of the catalyst, the interaction between γ -Fe₂O₃ and Cr₂O₃ is found to be insignificant, while for the coprecipitated method, the interaction takes place by the incorporation of Cr^{3+} ions into the octahedral vacant sites of the γ -Fe₂O₃ lattice where chromia concentration remains below 15%, above which the crystallization of the mixed phase is hindered and the activity of the catalyst tends to decrease. The reverse coprecipitation technique with a chromia concentration of nearly 10% is found to be most effective for imparting higher CO conversion activity. \circ 1988 Academic Press, Inc.

INTRODUCTION

Chromia-promoted iron oxide is widely used as a water gas shift reaction catalyst in which iron oxide mass initially exists in any of the crystalline forms, viz., α -Fe₂O₃, γ -Fe₂O₃, or hydrated iron oxide, and chromia is used as a structural promoter $(1-3)$. The incorporation of Cr^{3+} ions into α -Fe₂O₃ lattice occurs readily by a continuous cationic interdiffusion process (4, 5). But the same is not true for γ -Fe₂O₃ which differs in structural symmetry from α -Cr₂O₃. Both α - and γ -Fe₂O₃ are reduced to Fe₃O₄ to obtain the active catalytic mass for the water gas shift reaction. Since the reduction of γ -Fe₂O₃ into Fe₃O₄ is effected by topotactic transformation (6), sintering of the active phase is greatly reduced in catalysts consisting of γ -Fe₂O₃ compared to that of α -Fe₂O₃ under identical operating conditions. Because of this property,

 γ -Fe₂O₃ is preferentially used for the commercial production of high-temperature shift catalysts $(7-11)$. However, no systematic study has been reported so far for the identification of the nature of Cr^{3+} species in the catalytic system consisting of γ -Fe₂O₃/Cr₂O₃. Only limited information is available in published literature (7, 12).

 γ -Fe₂O₃ possesses an imperfect spinel structure in which $Fe³⁺$ ions are distributed in tetrahedral and octahedral positions with cation vacancies preferentially located at octahedral lattice sites $(13-15)$. Because of the preferential distribution of vacancies at octahedral sites, $Fe³⁺$ ions are more strongly bound at the tetrahedral lattice points $(13, 16)$. According to Verwey (14) and Kordes (15) the structure of γ -Fe₂O₃ can be represented as $(Fe₁³⁺)_{tetr.}$ $(\Box_{1/3}Fe_{5/3}^{3+})$ _{Oct.}O₄, where $\Box_{1/3}$ denotes nearly 11% cation vacancies per molecule. It therefore seems possible that in the chro-

mia-promoted γ -Fe₂O₃ catalysts, Cr³⁺ ions can be incorporated into the octahedral vacant sites of γ -Fe₂O₃.

With this goal in mind, in the present investigation, a systematic study has been carried out on the identification of the nature of incoporation of Cr^{3+} ions and the evolution of phases in chromia-promoted γ -Fe₂O₃ catalysts prepared under different conditions as well as the structural parameters and their effects on the catalytic activities for water gas shift reactions.

EXPERIMENTAL

Three series of samples were prepared for this study and will be denoted as A, B, $\frac{1}{2}$ c. $\frac{1}{2}$ c. and C , $y = c_2 \sigma_3$ was prepared by σ σ μ all ation of iron hydroxide slurry in alkaline
medium. The precipitated mass was m cal- m , m p free pree m m m m m washed to fire it from 504 forms and calcined at 473 K for 1 h. This sample was designated A. The three samples in this series were prepared by kneading (incipient wet mixing) v -Fe₂O₃ with chromium(VI) α oxide solution to have nearly 10, 15, and 20% Cr₂O₃ by weight after calcination and were designated A1, A2, and A3, respectively. B series samples were prepared by the coprecipitation of ferrous sulfate and chromium(III) sulfate solutions $(0.1 \t M)$ each) with 0.25 M NaOH solution under an inert atmosphere, followed by oxygenation

of the hydroxide slurry in an alkaline medium. The precipitated mass was washed to free it from sulfate ions and was oven dried at 383 K. Three samples, namely Bl, B2, and B3, were prepared with nearly 10, 15, and 20% Cr₂O₃ by weight, respectively. Samples Cl, C2, and C3 with about 10, 15, and 20% Cr₂O₃ by weight in the calcined product, respectively, were prepared by a reverse precipitation technique, i.e., by the addition of mixed ferrous and chromium(III) sulfate solution to sodium hydroxide solution. The other treatments were the same as those used for the B series. The difference between the B and the C series is that in the B series the metal hydroxides are precipitated one after another depending on the solubility products, whereas in the C $\frac{1}{2}$ soluting products, whereas in the $\frac{1}{2}$ series bour hydroxides are precipitated so multaneously. Another sample designated D was prepared by mechanical mixing of γ -Fe₂O₃ with 10% Cr₂O₃. The chromiaincorporated samples were calcined for 1 h at respective temperatures as shown in Table 1. The chemical analyses for iron and chromium in all the samples were performed using standard analytical methods.

Differential thermal analysis was carried out in a DTA instrument fabricated in PDIL Workshop. The heating rate was maintained at 10 K/min, and α -Al₂O₃ was used as standard. The preheat treatment of the

Crystal-Phase Composition and Structural Parameters of y-Fe,031Cr203 System at Different Temperatures Crystal-Phase Composition and Structural Parameters of γ -Fe₂O₃/Cr₂O₃ System at Different Temperatures parameter

Name of sample	$%$ Cr as Cr ₂ O ₃	Crystalline phases after calcination at					Lattice	Crystallite	Surface
		473 K	623 K	723 K	873 K	973 K	parameter of ν -Fe ₂ O ₂ at 723 K (\AA)	size of v -Fe ₂ O ₃ at 723 K (Å)	агеа (m^2/g)
A	0	γ -Fe ₂ O ₃	ν -Fe ₂ O ₂	γ -Fe ₂ O ₃ , α -Fe ₃ O ₃	α -Fe ₂ O ₃	α -Fe ₂ O ₃	8.335(3)	630	
A1	8.4	γ -Fe ₂ O ₃	ν -Fe ₂ O ₂	γ -Fe ₂ O ₃ , α -Cr ₂ O ₃	α -Fe ₂ O ₃	α -Fe ₂ O ₃	8.331(4)	560	25.1
A ₂	13.56	γ -Fe ₂ O ₃	ν -Fe ∂	γ -Fe ₂ O ₃ , α -Cr ₂ O ₃	α -Fe ₂ O ₃	α -Fe ₂ O ₃	8.331(4)	560	24.7
A ₃	18.71	γ -Fe ₂ O ₃	ν -Fe ₂ O ₃	γ -Fe ₂ O ₃ , α -Cr ₂ O ₃	α -Fe ₂ O ₃	α -Fe ₂ O ₂	8.330(5)	560	28.0
B1	9.86	a	γ -Fe ₂ O ₃	γ -Fe ₂ O ₃	γ -Fe ₂ O ₃ , α -Fe ₂ O ₃	α -Fe ₂ O ₃	8.305(6)	480	87.0
B ₂	15.01	a	γ -Fe ₂ O ₃	γ -Fe ₂ O ₃	y -Fe ₂ O ₃ , α -Fe ₂ O ₃	α -Fe ₂ O ₃	8.304(7)	280	146.4
B3	19.74	\boldsymbol{a}	γ -Fe ₂ O ₃	γ -Fe ₂ O ₁	ν -Fe ∂ , α -Fe ∂	α -Fe ₂ O ₁	8.304(7)	270	176.6
C1	9.62	\boldsymbol{a}	γ -Fe ₂ O ₃	γ -Fe ₂ O ₃	γ -Fe ₂ O ₃ , α -Fe ₂ O ₃	α -Fe ₂ O ₃	8.301(6)	300	95.0
C2	14.76	α	$y-Fe2O3$	γ -Fe ₂ O ₃	γ -Fe ₂ O ₃ , α -Fe ₂ O ₃	α -Fe ₂ O ₃	8.302(7)	200	121.2
C ₃	19.48	\boldsymbol{a}	a	u	α -Fe ₂ O ₃	α -Fe ₂ O ₁			137.7

^a Amorphous.

kneaded samples was carried out at 573 K because of the hygroscopic and corrosive nature of free chromic acid for DTA studies.

X-ray diffraction studies were carried out with a standard Guinier camera and X-ray diffractometer using CuK α radiation. θ -values were corrected by comparison with α -Al₂O₃ diffraction lines. Crystalline phases were determined by the JCPDS method and lattice parameters were determined from the θ -values using a suitable computer program. The crystallite sizes were measured by a line broadening technique using the Scherrer formula.

Electron micrographs of the samples were obtained using a transmission electron microscope (JEOL-JEM-100 CX). The samples were soaked in acetone to remove entrapped air and dispersed in isopropyl alcohol by means of an ultrasonic probe.

Infrared spectra were recorded in a SPECORD JR-75 IR spectrometer and a Bruker IFS Fourier transform IR spectrometer. The sample pellets were prepared using a CsI matrix.

The Mössbauer spectra of the samples were recorded in an NF-640 spectrometer at 295 and 77 K. Analyses of the Mossbauer spectra and the decomposition into Lorentz components were performed with the aid of an E-666 computer and SK-2 curve synthesizer. $Co⁵⁷$ (Pd) with an activity of some 20 mCi at room temperature was used as a source. γ quanta were registered by a proportional counter with resolution $\Delta E_{14.4 \text{ keV}}$ $= 15\%$. All chemical shifts were measured relative to α -Fe. Sample weights were varied within $10-25$ mg/cm² depending upon the content of Fe in mixed oxides. The samples were placed in Teflon cuvettes having a flat parallel Be window of 0.05 mm thick.

The CO conversion activities of the samples were measured in a glass reactor in the temperature range 518-573 K using a gas composition (dry) around 8% CO₂, 20% CO, 60% H_2 , 4% CH₄, and steam: gas = 1 .O, overall space velocities being varied in the range $10,000-30,000$ h⁻¹. The volume of the catalyst taken in each case was 1 cm^3 of -10 to $+12$ mesh size (B.S.). All experiments were conducted under isothermal conditions far removed from equilibrium (maximum conversion 10%). The surface areas of the samples were measured by the BET method. The samples were reduced with the same gas composition at a temperature of 523 K before activity measurements. The activities per gram catalyst sample were expressed as a first-order rate equation given by Laupichler (17).

RESULTS AND DISCUSSION

The DTA curves of the samples are shown in Fig. 1. In the DTA curves of samples Al, A2, and A3, an endothermic peak appears at 723 K whereas this peak is absent in sample A. This is due to formation of the Cr_2O_3 phase from the interme-

FIG. 1. DTA curves of γ -Fe₂O₃/Cr₂O₃ samples. A, γ -Fe₂O₃; A1, A2, and A3, wet mixed γ -Fe₂O₃/Cr₂O₃ having Cr_2O_3 contents of about 10, 15, and 20%, respectively; BI, B2, and B3, direct coprecipitated γ -Fe₂O₃/Cr₂O₃ having Cr₂O₃ contents of about 10, 15. and 20%, respectively; and C1, C2, and C3, γ -Fe \cdot O₁/ Cr_2O_3 having Cr_2O_3 contents of about 10, 15, and 20%. respectively.

diate oxides of chromium, which are formed during calcination of the samples at 573 K. The intensity of the endothermic peak increases with increasing chromia concentration. This implies that free Cr_2O_3 is present in the samples of the A series and therefore, practically no interaction between γ -Fe₂O₃ and Cr₂O₃ takes place in these samples. In the case of B and C series samples, no exothermic peak around 723 K was observed in the DTA thermogram. This peak has been attributed by several workers $(18, 19)$ to be due to the transformation of amorphous chromium hydroxide to crystalline chromium oxide. The absence of such a peak, therefore, indicates that in these samples, chromium hydroxide loses its identity under the present preparative conditions, thus implying the formation of a mixed hydroxide phase, which is converted into chromium-substituted γ -Fe₂O₃ upon oxidation.

The exothermic peaks, appearing in the DTA thermograms of all the samples, are accounted for by the transformation of γ -Fe₂O₃ into the α -Fe₂O₃ phase. In sample A, this peak appears at 823 K which is somewhat higher than the values reported elsewhere (20) . In the samples of the A series, this peak is shifted to 893 K and in the samples of the B and C series, the same is further shifted to 913 K. A similar increase in the $\gamma \rightarrow \alpha$ phase transition temperature in the presence of chromia has been reported by Danielezyk and Haber (9). The increase in the phase transition temperature suggests that in the presence of chromia, γ -Fe₂O₃ becomes thermally stable, and the thermal stability of the coprecipitated samples is more than that of the wet mixed samples. In the case of samples C1 and C2, the exothermic peak becomes weak and broad and disappears in sample C3. This observation reveals that the incorporation of higher concentrations (more than 15%) of chromia by the reverse coprecipitation technique, as in the case of sample C3, hinders the crystallization of γ -Fe₂O₃.

X-ray investigation results are presented

in Table 1. The estimated standard deviations of the lattice parameter (a_0) values are shown in parentheses. In the case of kneaded samples (A1 to A3), γ -Fe₂O₃ is the predominate phase at the early stage of calcination, and a free $Cr₂O₃$ phase is present in all the samples calcined at 723 K only. The formation of a single corundum-type α -Fe₂O₃ phase has been observed at 873 K. In the case of samples Bl to B3, the crystalline γ -Fe₂O₃ phase is formed at 623 K. The transformation from the γ - to the α -phase starts around 873 K and is completed at 973 K. In samples C1 to C3, γ -Fe₂O₃ crystallizes in samples Cl and C2 at 623 K whereas sample C3 is amorphous up to 723 K. The transformation from the γ - to the α -phase takes place as in samples of B series (Table 1)

Pure γ -Fe₂O₃ (sample A) starts to transform into α -Fe₂O₃ at 723 K and is completed at 873 K. In the presence of Cr^{3+} ions this transformation temperature is elevated. The elevation of temperature is greater in coprecipitated samples than in the kneaded samples, which indicates that the thermal stability of γ -Fe₂O₃ is greater in coprecipitated samples. In the case of kneaded samples the measured lattice parameter values of γ -Fe₂O₃ at 723 K show an insignificant decrease in a_0 values (Table 1) after incorporating Cr_2O_3 into γ -Fe₂O₃. The crystallite size of γ -Fe₂O₃ (Table 1) also does not change with an increase in chromia concentration. The insignificant change in a_0 values and the presence of free Cr₂O₃ reveal that there is little interaction between γ -Fe₂O₃ and Cr₂O₃ in the kneading process. In coprecipitated samples, the change in a_0 values of γ -Fe₂O₃ from that of sample A is significant (Table 1). Moreover, the crystallite sizes of γ -Fe₂O₃ are found to decrease monotonically with increasing chromium concentration (Table 1) and the X-ray diffraction lines gradually become broad and diffuse, particularly below 723 K. This is more pronounced in the C series samples; initially, at low chromia concentration, the composite oxide is crystalline but with an increase in $Cr³⁺$ content a monotonic transition from a crystalline to an amorphous state occurs. The X-ray studies, therefore, reveal that in coprecipitated samples Cr^{3+} ions can enter the γ -Fe₂O₃ lattice up to a certain concentration which is below 15%; consequently a lattice distortion takes place as is evident from the lattice parameter change. Furthermore, with the increase in $Cr³⁺$ content, a monotonic decrease on a long-range order of the γ -Fe₂O₃ lattice seems to occur as inferred from the gradual broadening and diffuseness of the diffraction lines. However, further studies are necessary to substantiate this.

The results obtained from X-ray diffraction were further corroborated by electron microscopic studies. The electron diffraction pattern of sample A corresponds to the γ -Fe₂O₃ phase. Free Cr₂O₃ was noted in the electron diffraction patterns of samples Al to A3 in addition to the γ -Fe₂O₃ phase. The existence of free Cr_2O_3 was also indicated in the electron micrographs by the appearance of plate-like particles over the γ -Fe₂O₃ particles. However, no free Cr_2O_3 was noted in the coprecipitated samples (B and C series). Electron diffraction patterns also indicated a distortion of γ -Fe₂O₃ structure in the case of samples B3 and C3. This suggests that an interaction between ν -Fe₂O₃ and Cr_2O_3 has taken place in coprecipitated samples. The incorporation of Cr_2O_3 in the samples prepared by kneading does not show any major influence on the particle size of the γ -Fe₂O₃ phase. However, the γ -Fe₂O₃ particle sizes in the B and C series samples have been found to decrease appreciably by increasing incorporation of Cr_2O_3 . This shows that an increase in chromia concentration in the coprecipitated samples hinders the crystal growth of γ -Fe₂O₃.

Infrared spectra of the samples of A, B, and C series, shown in Fig. 2, correspond to an imperfect spinel of γ -Fe₂O₃. This conclusion is based on the remarkable splitting of absorption bands in the regions 800-500

FIG. 2. Infrared spectra of γ -Fe_zO₃/Cr₂O₃ samples. A, γ -Fe₂O₃; A1 and A3, wet mixed γ -Fe₂O₃/Cr₂O₃ having Cr_2O_3 contents of about 10 and 20%, respectively; B1 and B3, direct coprecipitated γ -Fe₂O₃/Cr₂O₃ having $Cr₂O₃$ contents of about 10 and 20%, respectively; and C1 and C3, reverse coprecipitated γ -Fe₂O₃/Cr₂O₃ having Cr_2O_3 contents of about 10 and 20%, respectively.

and $500-350$ cm⁻¹ into several components $(720, 640, 575$ cm⁻¹ and 440, 410 cm⁻¹, respectively). According to Preudhomme and Tarte (21), these bands are due to ν_1 (800-500 cm⁻¹) and v_2 (500–350 cm⁻¹) modes of the FeO₆ vibrations. However, Ishii et al. (22) ascribed the ν_1 mode to vibrations of both octahedra and tetrahedra and ν_2 to those of octahedra. The latter interpretation seems to be more reasonable. It can be observed from Fig. 2 that for the samples of the A series, the absorption bands are not affected significantly in the region 800-500 cm^{-1} ; only the absorption bands in the region 500-350 cm^{-1} are affected nominally with respect to their relative intensities and positions (shift from 440 to 450 and 410 to 415 cm^{-1}). This suggests that in the A series samples, Cr^{3+} is not incorporated into the

Name of sample	Temperature (K)	Chem. shift δ (mm/s)	Quard. splitting Δ (mm/s)	Width of line $G_{1,6}$ (mm/s)	$H_{\rm eff}$ $(K \cdot Oe)$	δ^a (mm/s)	Δ^a (mm/s)	$G_{1,2}^a$ (mm/s)
$\boldsymbol{\mathsf{A}}$	295	0.29	0.01	0.70	494			
	80	0.43	0.01	0.61 0.78 0.70	521			
A1	295	0.29	0.02	$0.70\,$ 0.61	494			
	80	0.38	0.01	0.78 $0.70\,$	521			
A2	295	0.28	0.03	0.70 0.62	491			
	80	0.36	$\pmb{0}$	0.78 0.70	518.7			
A ₃	295	0.28	0.01	0.78 0.70	490			
	80	0.44	$\pmb{0}$	0.78 0.72	518.7			
B1	295	$\boldsymbol{0.28}$	0.04	0.78 0.78	494	0.35	0.70	
	80	0.39	$\pmb{0}$	0.87 0.78	521	0.39	0.79	
$\mathbf{B2}$	295	0.27	0.08	0.96 0.79	486	0.35	$0.70\,$ 0.79	0.78
B ₃	80 295	0.42 0.24	0.02 $\boldsymbol{0.08}$	1.05 0.79 0.88	518.7 488.7	0.39 0.35	0.70	
	80	0.42	0.02	0.88 0.78	515.9	0.48	0.79	
C1	295	0.30	$\bf{0}$	0.78 0.70	488.7	0.31	0.61	
	80	0.37	$\mathbf{0.02}$	0.78 0.78	518.7	0.39	0.88	
C ₂	295	0.24	0.06	0.78 1.05	486	0.31	0.61	
	80	0.37	0.06	0.46 1.05	510	0.44	0.88	
C ₃	295 $80\,$			0.88 ---	490	0.31 0.48	0.61 0.79	0.79 0.96
$\mathbf D$	295	0.29	0.01	0.70 0.62	494			
	80	0.40	0.01	0.78 0.62	524			

Value of NCR Parameters of Mixed Fe-Cr Oxides, Calcined at 673 K

a For superparamagnetic doublet.

 Cr_2O_3 on the surface. For the B and C se- v_2 bands are perturbed more than v_1 bands. ries samples, the absorption bands are sig- The absorption bands at 440 and 410 cm-'

 γ -Fe₂O₃ lattice, rather it is present as a free nificantly affected in both regions (Fig. 2);

as well as 640 and 575 cm⁻¹ are gradually diminished in intensity and broadened appreciably with an increase in the Cr^{3+} concentration. Also, the absorption band at 720 cm⁻¹ disappears. These observations are more pronounced for samples of the C series than for those of the B series. In view of the perturbation of the absorption bands in both regions, it is evident that Cr^{3+} ions are incorporated into the γ -Fe₂O₃ lattice and a lattice distortion has also taken place. Considering the structure of γ -Fe₂O₃, it is suggested that in the case of coprecipitated samples, Cr^{3+} ions occupy mostly the octahedral vacant sites of the γ -Fe₂O₃ lattice. It is also revealed that after filling up of the vacant sites, the γ -Fe₂O₃ lattice tends to be distorted further by the inclusion of more $Cr³⁺$ ions as observed from the maximum broadening of the IR bands of sample C3.

Parameters of the Mössbauer spectra from samples of the A, B, C, and D series are shown in Table 2. The representative spectra are shown in Fig. 3. The spectrum of pure γ -Fe₂O₃ (sample A) has a sextet of lines ascribed to iron oxide which is close

FIG. 3. Mössbauer spectra of γ -Fe₂O₃/Cr₂O₃ samples. A, γ -Fe₂O₃; A2, wet mixed γ -Fe₂O₃/Cr₂O₃ having a Cr_2O_3 content of about 15%; B2, direct coprecipitated γ -Fe₂O₃/Cr₂O₃ having a Cr₂O₃ content of about 15%; and C2, reverse coprecipitated γ -Fe₂O₃/ Cr_2O_3 having a Cr_2O_3 content of about 15%.

to the imperfect spinel of γ -Fe₂O₃. A distinct feature of these modifications of Fe(II1) is a small value of quadrupole splitting. However, the value of δ is somewhat lower in than that of γ -Fe₂O₃ and Fe₃O₄, and H_{eff} varies over wider ranges with temperature (23), which can be accounted for by the imperfection of the γ -Fe₂O₃ lattice. Some asymmetry in the first and sixth most intense components of the γ -Fe₂O₃ may be due to the formation of α -Fe₂O₃ in traces. In samples of series A, the presence of Cr^{3+} ions has little effect on Mössbauer spectral parameters which remain essentially the same as those in imperfect γ -Fe₂O₃. In the Mössbauer spectra of the B series samples, a doublet appears along with the sextet from the imperfect γ -Fe₂O₃ (or spinel). This doublet can be interpreted as a superparamagnetic doublet as a result of the incorporation of Cr^{3+} ions into octahedral vacancies of the spinel. In this case, part of spin density of $Fe³⁺$ ions is not available for exchange. The monotonic decrease in the γ -Fe₂O₃ particle size (Table 1) with increasing Cr^{3+} concentration and the decrease in the relative spectral area of this doublet at low temperatures are consistent with superparamagnetic relaxation (24). Thus the appearance of doublet (Fig. 3, spectrum B2) is an indication of the interaction between $Fe³⁺$ and $Cr³⁺$ in the spinel lattice. The presence of line broadening also supports this fact, since line broadening increases with the increasing concentration of $Cr³⁺$ to 15% in the sample and then decreases somewhat (Table 2). The same features are characteristic for samples of the C series as well, but in this case the doublet is more intense, and line broadening is even more pronounced. This observation indicates the greater extent of the interaction between $Fe³⁺$ and $Cr³⁺$ ions in the spinel lattice. In view of the fact that parameters of the sextet remain unchanged within experimental error (± 0.03 mm/s), one may conclude that except for the filling of cation vacancies in the spinel, no other mechanisms of interaction between Cr and Fe in mixed ox-

FIG. 4. Arrhenius plot of γ -Fe₂O₃/Cr₂O₃ samples. A1, A2, and A3, wet mixed γ -Fe₂O₃/Cr₂O₃ having A1, A2, and A5, wet inixed γ -re₂O₃/Cr₂O₃ having has been reported by Markina *et al.* (2) and Cr₂O₃ contents of about 10, 15, and 20%, respectively; Bl, B2, and B3, direct coprecipitated γ -Fe₂O₃/Cr₂O₃ Sen *et al.* (27). The results also indicate that having Cr_2O_3 contents of about 10, 15, and 20%, re- a favorable cationic interaction seems to be spectively; and C1, C2, and C3, reverse coprecipi- necessary for enhancing the catalytic activtated γ -Fe₂O₃/Cr₂O₃ having Cr₂O₃ contents of about 10, IS, and 20%. respectively.

in the form of free α -Cr₂O₃. In sample C3 lattice by Cr³⁺ ions. However, the presence the sextet is not observed and all iron is in a of excess chromia causes a deterioration in superparamagnetic state. catalytic activity.

The relative CO conversion activities of A, B, and C series sample are presented in Fig. 4. The measured apparent activation SUMMARY energies for all samples lie in the range The incorporation of $Cr³⁺$ ions in the 18-23 kcal \cdot mol⁻¹. Figure 4 indicates that γ -Fe₂O₃ lattice increases the thermal stabilsamples A1, B1, and C1 containing nearly ity of γ -Fe₂O₃ as is evident from DTA and 10% Cr₂O₃ have better CO conversion ac- XRD studies. tivities than others. Of these three samples, In a wet mixed method of preparation of sample C1, in which the cationic interaction catalysts, Cr_2O_3 has little interaction with is most prominent, shows the highest CO γ -Fe₂O₃ and exists as a separate phase on conversion activity. However, the surface the surface as revealed by the different area values (Table 1) of samples B2, B3, studies. C2, and C3 are comparatively higher than γ -Fe₂O₃ is a defect spinel having nearly those of samples A1, B1, and C1, indicating 11% cation vacancies per molecule at octaan increase in surface area with increasing hedral sites. The present investigation sugchromia content in the composite oxide. gests that in the case of coprecipitated This shows that the surface area has no di-samples less than $15\% \text{ Cr}^{3+}$ ions are incorrect relationship with the CO conversion porated into these octahedral vacancies.

containing γ -Fe₂O₃ and Cr₂O₃. A decrease in the activity with increasing chromia content has been observed in all series of $30 \left(\sqrt{\frac{m}{m}} \right)$ samples. This occurs mainly due to the presence of free chromia which seems to cover the iron oxide surface. This is more prominent in the case of samples B2, B3, C2, and C3. The lattice disruption in the case of sample C3 is also an important factor for reducing its catalytic activity to the lowest value.

The studies of conversion activities reveal that the incorporation of about 10% $Cr₂O₃$ by weight is sufficient for preparing an effective chromia-promoted iron oxide catalyst. A similar dependence of catalytic activity on the optimum concentration of Cr_2O_3 in the case of α -Fe₂O₃/Cr₂O₃ catalyst ity of chromia-promoted γ -Fe₂O₃ catalyst for the water gas shift reaction. The catalytic activity remains stable until the filling ides are realized, and excess Cr is present up of the octahedral vacant sites of γ -Fe₂O₃

activity, which has also been reported by The inclusion of more than 15% Cr³⁺ ions

hinders the crystallization of the mixed phase.

The catalytic activities of the coprecipitated samples having a chromia content less than 15% are found to be greater than those of the kneaded samples. With an increase in chromia concentration, catalytic activity decreases. The surface area has no direct relationship with the conversion activity. The catalyst sample prepared by a reverse coprecipitation technique having a chromia concentration of nearly 10% shows maximum catalytic activity.

ACKNOWLEDGMENTS

The authors express their sincere thanks to Professor L. M. Plyasova, Dr. S. V. Ketchik, and Dr. E. A. Paukhstis of the Institute of Catalysis for their cooperation and valuable discussions. Thanks are also due to Mr. K. C. Banerji, General Manager (R&D), Projects & Development India Limited, for his encouragement.

REFERENCES

- 1. Mars, P., Chem. Eng. Sci. 14, 375 (1961).
- 2. Markina, M. I., Boreskov, G. K., Ivanovskii, F. P., and Lyudkovskaya, B. G., Kinet. Katal. 2,867 (1961).
- S. Maiti, G. C., Kundu, M. L., Ghosh, S. K., and Banerjee, B. K., Proc. Natl. Acad. Sci. (India) 41, 496 (1975).
- 4. Dicerbo, R. K., and Seybolt, A. K., J. Amer. Ceram. Soc. 42, 430 (1959).
- 5. Maiti, G. C., and Ghosh, S. K., Indian J. Chem. 24, 513 (1985).
- 6. Gazzarini, F., and Lanzavecchia, G., "Proc. 6th International Symposium on the Reactivity of Solids," p. 57. Wiley-Interscience, New York, 1968.
- 7. Iovita, V. N., Serban, S., Iovita, C., Popa, A., and Franchy, R., Rev. Chim. (Bucharest) 23, 745 (1973).
- 8. Badishoe Anilin. und Soda-Fabrik. A.G.. Fr. I, 566. 83109, May, 1969.
- 9. Danielezyk, N., and Haber, J., *Rocz. Chen* 49(11), 1897 (1975).
- 10. Maiti, G. C., Kundu, M. L., Sen Gupta, A. C., Sen, B., and Ghosh, S. K., "Proc. 2nd Indo-Soviet Seminar in Catalysis and Catalytic Reaction Engineering, R.R.L., Hyderabad, India, Nov. 25-28, 1986."
- 11. Sen Gupta, A. C., Kundu, M. L., Maiti, G. C., Chakraborty, B. K., Sen, B., and Ghosh, S. K., "3rd National Workshop on Catalysis and Catalysts in Chemical Industries, R.R.L., Bhubaneswar, India, Feb. 10-12, 1986."
- 12. Deboer, F. E., and Selwood, P. W., J. Ame. Chem. Soc. 76, 3365 (1954).
- 13. Ferguson, G. A., Jr., and Hass, M., *Phys. Rev* 112(4), 1130 (1958).
- 14. Verwey, E. J. W., Z. *Kristallogr*. **91,** 65 (1935)
- 15. Kordes, E., Z. Kristallogr. 92, 139 (1935).
- 16. Verwey, E. J. W., and Heilmann, L. L. E. L., 1. Chem. Phys. 15, 174 (1948).
- 17. Laupichler, F. G., *Ind. Eng. Chem.* **30,** 578 (1938)
- 18. Bhattacharya, S. K., Ramachandran, V. S., and Ghosh, J. C., "Advances in Catalysis" (D. D. Eley, W. G. Frankenburg, V. I. Komarewsky, and P. B. Weisz, Eds.), Vol. 9, p. 114. Academic Press, New York, 1957.
- 19. Carruthers, J. D., Sing, K. S. W., and Fernerty, J., "Proc. 6th International Symposium on the Reactivity of Solids," p. 127. 1968.
- 20. Mackenzie, R. C., "Differential Thermal Analysis," Vol. I, p. 276. 1970.
- 21. Preudhomme, J., and Tarte, P., Spectroch Acta A 27, 1817 (1971).
- 22. Ishii, M., Nakahira, M., and Yamanaka, T., Solid State Commun. 11(1), 209 (1972).
- 23. Danon, N., "Chemical Applications of Mössbauer Spectroscopy" (V. I. Goldanskii, Ed.), pp. 171- 178. Moscow, 1970. [In Russian]
- 24. Rean, C. P., and Livingston, J. D., J. Appl. Phys. 30, 1208 (1959).
- 25. Sen, S. P., and Sen, B., Technology 5(1), 3 (1968).
- 26. Iovanovic, Z., and Stefanovic, M., Hem. Ind. 6, 231 (1973).
- 27. Sen, S. P., Arora, B. R., and Ganguli, N. C. Technology 4, 53 (1967).